Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Crit Care ; 27(1): 143, 2023 04 15.
Article in English | MEDLINE | ID: covidwho-2305266

ABSTRACT

BACKGROUND: Previous studies have demonstrated a beneficial effect of early use of corticosteroids in patients with COVID-19. This study aimed to compare hospitalized patients with COVID-19 who received short-course corticosteroid treatment with those who received prolonged-course corticosteroid treatment to determine whether prolonged use of corticosteroids improves clinical outcomes, including mortality. METHODS: This is a retrospective cohort study including adult patients with positive testing for Sars-CoV-2 hospitalized for more than 10 days. Data were obtained from electronic medical records. Patients were divided into two groups, according to the duration of treatment with corticosteroids: a short-course (10 days) and a prolonged-course (longer than 10 days) group. Inverse probability treatment weighting (IPTW) analysis was used to evaluate whether prolonged use of corticosteroids improved outcomes. The primary outcome was in-hospital mortality. Secondary outcomes were hospital infection and the association of different doses of corticosteroids with hospital mortality. Restricted cubic splines were used to assess the nonlinear association between mortality and dose and duration of corticosteroids use. RESULTS: We enrolled 1,539 patients with COVID-19. Among them, 1127 received corticosteroids for more than 10 days (prolonged-course group). The in-hospital mortality was higher in patients that received prolonged course corticosteroids (39.5% vs. 26%, p < 0.001). The IPTW revealed that prolonged use of corticosteroids significantly increased mortality [relative risk (RR) = 1.52, 95% confidence interval (95% CI): 1.24-1.89]. In comparison to short course treatment, the cubic spline analysis showed an inverted U-shaped curve for mortality, with the highest risk associated with the prolonged use at 30 days (RR = 1.50, 95% CI 1.21-1.78). CONCLUSIONS: Prolonged course of treatment with corticosteroids in hospitalized patients with COVID-19 was associated with higher mortality.


Subject(s)
COVID-19 , Adult , Humans , Retrospective Studies , SARS-CoV-2 , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/pharmacology , Probability
2.
Exp Mol Med ; 55(3): 653-664, 2023 03.
Article in English | MEDLINE | ID: covidwho-2264624

ABSTRACT

We do not yet understand exactly how corticosteroids attenuate hyperinflammatory responses and alleviate high-risk coronavirus disease 2019 (COVID-19). We aimed to reveal the molecular mechanisms of hyperinflammation in COVID-19 and the anti-inflammatory effects of corticosteroids in patients with high-risk COVID-19. We performed single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from three independent COVID-19 cohorts: cohort 1 was used for comparative analysis of high-risk and low-risk COVID-19 (47 PBMC samples from 28 patients), cohort 2 for longitudinal analysis during COVID-19 (57 PBMC samples from 15 patients), and cohort 3 for investigating the effects of corticosteroid treatment in patients with high-risk COVID-19 (55 PBMC samples from 13 patients). PBMC samples from healthy donors (12 PBMC samples from 12 donors) were also included. Cohort 1 revealed a significant increase in the proportion of monocytes expressing the long noncoding RNAs NEAT1 and MALAT1 in high-risk patients. Cohort 2 showed that genes encoding inflammatory chemokines and their receptors were upregulated during aggravation, whereas genes related to angiogenesis were upregulated during improvement. Cohort 3 demonstrated downregulation of interferon-stimulated genes (ISGs), including STAT1, in monocytes after corticosteroid treatment. In particular, unphosphorylated STAT-dependent ISGs enriched in monocytes from lupus patients were selectively downregulated by corticosteroid treatment in patients with high-risk COVID-19. Corticosteroid treatment suppresses pathologic interferon responses in monocytes by downregulating STAT1 in patients with high-risk COVID-19. Our study provides insights into the mechanisms underlying COVID-19 aggravation and improvement and the effects of corticosteroid treatment.


Subject(s)
COVID-19 , Leukocytes, Mononuclear , Humans , Leukocytes, Mononuclear/metabolism , Interferons , Monocytes/metabolism , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
3.
JAMA Netw Open ; 5(2): e220548, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1711993

ABSTRACT

Importance: A World Health Organization (WHO) meta-analysis found that tocilizumab was associated with reduced mortality in hospitalized patients with COVID-19. However, uncertainty remains concerning the magnitude of tocilizumab's benefits and whether its association with mortality benefit is similar across respiratory subgroups. Objective: To use bayesian methods to assess the magnitude of mortality benefit associated with tocilizumab and the differences between respiratory support subgroups in hospitalized patients with COVID-19. Design, Setting, and Participants: A bayesian hierarchical reanalysis of the WHO meta-analysis of tocilizumab studies published in 2020 and 2021 was performed. Main results were estimated using weakly informative priors to exert little influence on the observed data. The robustness of these results was evaluated using vague and informative priors. The studies featured in the meta-analysis were randomized clinical tocilizumab trials of hospitalized patients with COVID-19. Only patients receiving corticosteroids were included. Interventions: Usual care plus tocilizumab in comparison with usual care or placebo. Main Outcomes and Measures: All-cause mortality at 28 days after randomization. Results: Among the 5339 patients included in this analysis, most were men, with mean ages between 56 and 66 years. There were 2117 patients receiving simple oxygen only, 2505 receiving noninvasive ventilation (NIV), and 717 receiving invasive mechanical ventilation (IMV) in 15 studies from multiple countries and continents. Assuming weakly informative priors, the overall odds ratios (ORs) for survival were 0.70 (95% credible interval [CrI], 0.50-0.91) for patients receiving simple oxygen only, 0.81 (95% CrI, 0.63-1.03) for patients receiving NIV, and 0.89 (95% CrI, 0.61-1.22) for patients receiving IMV, respectively. The posterior probabilities of any benefit (OR <1) were notably different between patients receiving simple oxygen only (98.9%), NIV (95.5%), and IMV (75.4%). The posterior probabilities of a clinically meaningful association (absolute mortality risk difference >1%) were greater than 95% in patients receiving simple oxygen only and greater than 90% in patients receiving NIV. In contrast, the posterior probability of this clinically meaningful association was only approximately 67% in patients receiving IMV. The probabilities of tocilizumab superiority in the simple oxygen only subgroup compared with the NIV and IMV subgroups were 85% and 90%, respectively. Predictive intervals highlighted that only 72.1% of future tocilizumab IMV studies would show benefit. The conclusions did not change with different prior distributions. Conclusions and Relevance: In this bayesian reanalysis of a previous meta-analysis of 15 studies of hospitalized patients with COVID-19 treated with tocilizumab and corticosteroids, use of simple oxygen only and NIV was associated with a probability of a clinically meaningful mortality benefit from tocilizumab. Future research should clarify whether patients receiving IMV also benefit from tocilizumab.


Subject(s)
Adrenal Cortex Hormones/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , COVID-19 Drug Treatment , COVID-19 , Noninvasive Ventilation , Bayes Theorem , COVID-19/mortality , COVID-19/therapy , Humans , Middle Aged , Mortality , Noninvasive Ventilation/methods , Noninvasive Ventilation/statistics & numerical data , Risk Assessment , World Health Organization
4.
Acta Otolaryngol ; 141(11): 989-993, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1479845

ABSTRACT

BACKGROUND: The effect of Covid-19 infection on nasal mucociliary clearance (MCC) is unknown. AIMS/OBJECTIVES: The aim of this study is to investigate the relationship between Covid-19 and nasal MCC in terms of smoking, Covid-19 symptoms and treatment. METHODS: Thirty-six patients who were hospitalized in the pandemic ward due to Covid-19 and 36 volunteers (Covid-19 negative test result) who presented to the otolaryngology outpatient clinic with non-nasal symptoms were included in this study. The Saccharin test was performed in both groups to evaluate nasal MCC. RESULTS: The patients and control groups were not significantly different in terms of age and gender. The nasal MCC time was significantly higher in the patient group compared to the control group (19.18 ± 10.84 min and 13.78 ± 8.18 min, p = .003). CONCLUSIONS AND SIGNIFICANCE: In this study, we found that Covid-19 prolonged nasal MCC time regardless of age. We suggest that corticosteroids should be included in the treatment of Covid-19, both with its symptom reduction and its positive effect on MCC duration.


Subject(s)
COVID-19/physiopathology , Mucociliary Clearance/physiology , Nasal Mucosa/physiopathology , Smoking/physiopathology , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use , Adult , Amides/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/complications , Case-Control Studies , Female , Humans , Hydroxychloroquine/adverse effects , Length of Stay , Male , Middle Aged , Mucociliary Clearance/drug effects , Pyrazines/therapeutic use , COVID-19 Drug Treatment
5.
J Infect Dis ; 224(6): 934-937, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1429244

ABSTRACT

Emerging data from open-label randomized trials without placebo controls suggest potential mortality benefits for combining corticosteroids with the interleukin 6 receptor antagonist tocilizumab in severe coronavirus disease 2019. Conversely, dual immunomodulation may weaken antiviral responses and delay viral clearance, allowing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to expand its population and accrue genetic diversity within individual hosts. Generating a pool of hosts with genetically diverse viral populations while introducing new selective pressures in the form of vaccination-induced immunity could accelerate the process of antigenic drift in SARS-CoV-2. However, clinical trials to date have largely disregarded viral outcomes, and data on viral kinetics in response to immunomodulation are scarce. Coadministration of antiviral agents with immunomodulation could serve as a potential strategy to aid viral clearance and reduce the risk of genetic diversification.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , COVID-19 Drug Treatment , Dexamethasone/pharmacology , SARS-CoV-2/drug effects , Adrenal Cortex Hormones/pharmacology , Antiviral Agents/pharmacology , Drug Combinations , Humans , Immunologic Factors
6.
Viruses ; 13(7)2021 07 20.
Article in English | MEDLINE | ID: covidwho-1325786

ABSTRACT

Treatment options for COVID-19, a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, are currently severely limited. Therefore, antiviral drugs that efficiently reduce SARS-CoV-2 replication or alleviate COVID-19 symptoms are urgently needed. Inhaled glucocorticoids are currently being discussed in the context of treatment for COVID-19, partly based on a previous study that reported reduced recovery times in cases of mild COVID-19 after inhalative administration of the glucocorticoid budesonide. Given various reports that describe the potential antiviral activity of glucocorticoids against respiratory viruses, we aimed to analyze a potential antiviral activity of budesonide against SARS-CoV-2 and circulating variants of concern (VOC) B.1.1.7 (alpha) and B.1.351 (beta). We demonstrate a dose-dependent inhibition of SARS-CoV-2 that was comparable between all viral variants tested while cell viability remains unaffected. Our results are encouraging as they could indicate a multimodal mode of action of budesonide against SARS-CoV-2 and COVID-19, which could contribute to an improved clinical performance.


Subject(s)
Antiviral Agents/pharmacology , Budesonide/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Adrenal Cortex Hormones/pharmacology , Animals , Antiviral Agents/administration & dosage , Budesonide/administration & dosage , COVID-19/virology , Chlorocebus aethiops , Glucocorticoids/pharmacology , Humans , Vero Cells , Virus Replication/drug effects
7.
Mycoses ; 64(8): 817-822, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1258972

ABSTRACT

OBJECTIVES: To investigate the occurrence of Trichosporon asahii fungemia among critically ill COVID-19 patients. METHODS: From 1 July to 30 September 2020, cases of T asahii fungemia (TAF) in a Brazilian COVID-19 referral centre were investigated. The epidemiology and clinical courses were detailed, along with a mycological investigation that included molecular species identification, haplotype diversity analysis and antifungal susceptibility testing. RESULTS: Five critically ill COVID-19 patients developed TAF in the period. All five patients had common risk conditions for TAF: central venous catheter at fungemia, previous exposure to broad-spectrum antibiotics, prior echinocandin therapy and previous prolonged corticosteroid therapy. The average time of intensive care unit hospitalisation previous to the TAF episode was 23 days. All but one patient had voriconazole therapy, and TAF 30-day mortality was 80%. The five T asahii strains from the COVID-19 patients belonged to 4 different haplotypes, mitigating the possibility of skin origin and cross-transmission linking the 5 reported episodes. The antifungal susceptibility testing revealed low minimal inhibitory concentrations for azole derivatives. CONCLUSIONS: Judicious prescription of antibiotics, corticosteroids and antifungals needs to be discussed in critically ill COVID-19 patients to prevent infections by hard-to-treat fungi like T asahii.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Antifungal Agents/administration & dosage , Basidiomycota/isolation & purification , COVID-19/complications , Superinfection/complications , Trichosporonosis/complications , Adrenal Cortex Hormones/pharmacology , Aged , Antifungal Agents/pharmacology , Basidiomycota/classification , Basidiomycota/drug effects , Basidiomycota/genetics , Brazil/epidemiology , COVID-19/epidemiology , Candidemia/complications , Female , Fungemia/complications , Haplotypes , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Phylogeny , Risk Factors , Superinfection/epidemiology , Trichosporonosis/epidemiology
8.
PLoS One ; 16(6): e0252576, 2021.
Article in English | MEDLINE | ID: covidwho-1256043

ABSTRACT

Inhaled Corticosteroids (ICS) are commonly prescribed to patients with severe COPD and recurrent exacerbations. It is not known what impact ICS cause in terms of COVID-19 positivity or disease severity in COPD. This study examined 27,810 patients with COPD from the Cleveland Clinic COVID-19 registry between March 8th and September 16th, 2020. Electronic health records were used to determine diagnosis of COPD, ICS use, and clinical outcomes. Multivariate logistic regression was used to adjust for demographics, month of COVID-19 testing, and comorbidities known to be associated with increased risk for severe COVID-19 disease. Amongst the COPD patients who were tested for COVID-19, 44.1% of those taking an ICS-containing inhaler tested positive for COVID-19 versus 47.2% who tested negative for COVID-19 (p = 0.033). Of those who tested positive for COVID-19 (n = 1288), 371 (28.8%) required hospitalization. In-hospital outcomes were not significantly different when comparing ICS versus no ICS in terms of ICU admission (36.8% [74/201] vs 31.2% [53/170], p = 0.30), endotracheal intubation (21.9% [44/201] vs 16.5% [28/170], p = 0.24), or mortality (18.4% [37/201] vs 20.0% [34/170], p = 0.80). Multivariate logistic regression demonstrated no significant differences in hospitalization (adj OR 1.12, CI: 0.90-1.38), ICU admission (adj OR: 1.31, CI: 0.82-2.10), need for mechanical ventilation (adj OR 1.65, CI: 0.69-4.02), or mortality (OR: 0.80, CI: 0.43-1.49). In conclusion, ICS therapy did not increase COVID-19 related healthcare utilization or mortality outcome in patients with COPD followed at the Cleveland Clinic health system. These findings should encourage clinicians to continue ICS therapy for COPD patients during the COVID-19 pandemic.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , COVID-19 Drug Treatment , Pulmonary Disease, Chronic Obstructive/drug therapy , Administration, Inhalation , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/pharmacology , Adrenergic beta-2 Receptor Agonists/adverse effects , Adult , Aged , COVID-19/complications , COVID-19 Testing , Female , Forced Expiratory Volume , Humans , Male , Middle Aged , Muscarinic Antagonists/therapeutic use , Nebulizers and Vaporizers , Pandemics , Pulmonary Disease, Chronic Obstructive/complications , Registries , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
10.
Food Chem Toxicol ; 150: 112087, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1188569

ABSTRACT

Coronavirus disease-19 (COVID-19) is a complex disease that causes illness ranging from mild to severe respiratory problems. It is caused by a novel coronavirus SARS-CoV-2 (Severe acute respiratory syndrome coronavirus-2) that is an enveloped positive-sense single-stranded RNA (+ssRNA) virus belongs to coronavirus CoV family. It has a fast-spreading potential worldwide, which leads to high mortality regardless of lows death rates. Now some vaccines or a specific drug are approved but not available for every country for disease prevention and/or treatment. Therefore, it is a high demand to identify the known drugs and test them as a possible therapeutic approach. In this critical situation, one or more of these drugs may represent the only option to treat or reduce the severity of the disease, until some specific drugs or vaccines will be developed and/or approved for everyone in this pandemic. In this updated review, the available repurpose immunotherapeutic treatment strategies are highlighted, elucidating the crosstalk between the immune system and SARS-CoV-2. Despite the reasonable data availability, the effectiveness and safety of these drugs against SARS-CoV-2 needs further studies and validations aiming for a better clinical outcome.


Subject(s)
Antiviral Agents/pharmacology , Inflammation/etiology , SARS-CoV-2/drug effects , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/virology , Cytokines/metabolism , Humans , Inflammation/drug therapy , Inflammation/immunology , Interferons/pharmacology , Interferons/therapeutic use , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , SARS-CoV-2/immunology , COVID-19 Drug Treatment
12.
Int Forum Allergy Rhinol ; 11(7): 1041-1046, 2021 07.
Article in English | MEDLINE | ID: covidwho-1136915

ABSTRACT

The frequent association between coronavirus disease 2019 (COVID-19) and olfactory dysfunction is creating an unprecedented demand for a treatment of the olfactory loss. Systemic corticosteroids have been considered as a therapeutic option. However, based on current literature, we call for caution using these treatments in early COVID-19-related olfactory dysfunction because: (1) evidence supporting their usefulness is weak; (2) the rate of spontaneous recovery of COVID-19-related olfactory dysfunction is high; and (3) corticosteroids have well-known potential adverse effects. We encourage randomized placebo-controlled trials investigating the efficacy of systemic steroids in this indication and strongly emphasize to initially consider smell training, which is supported by a robust evidence base and has no known side effects.


Subject(s)
Adrenal Cortex Hormones/pharmacology , COVID-19 , Medication Therapy Management/statistics & numerical data , Olfaction Disorders , COVID-19/complications , COVID-19/physiopathology , Drug-Related Side Effects and Adverse Reactions/diagnosis , Drug-Related Side Effects and Adverse Reactions/etiology , Drug-Related Side Effects and Adverse Reactions/prevention & control , Global Health , Humans , Medication Therapy Management/standards , Needs Assessment , Olfaction Disorders/drug therapy , Olfaction Disorders/epidemiology , Olfaction Disorders/etiology , Olfactory Mucosa/drug effects , Olfactory Mucosa/virology , Remission, Spontaneous , Research Design , SARS-CoV-2/pathogenicity
14.
Sci Rep ; 11(1): 1015, 2021 01 13.
Article in English | MEDLINE | ID: covidwho-1065933

ABSTRACT

Since the start of the novel coronavirus 2019 (COVID-19) pandemic, corticosteroid use has been the subject of debate. The available evidence is uncertain, and knowledge on the subject is evolving. The aim of our cohort study was to evaluate the association between corticosteroid therapy and hospital mortality, in patients hospitalized with COVID-19 after balancing for possible confounders. One thousand four hundred forty four patients were admitted to our hospital with a positive RT-PCR test for SARS-CoV-2, 559 patients (39%) were exposed to corticosteroids during hospital stay, 844 (61%) were not exposed to corticosteroids. In the cohort of patients exposed to corticosteroids, 171 (30.6%) died. In the cohort of patients not exposed to corticosteroids, 183 (21.7%) died (unadjusted p < 0.001). Nonetheless, exposure to corticosteroids was not associated with in-hospital mortality after balancing with overlap weight propensity score (adjusted p = 0.25). Patients in the corticosteroids cohort had a reduced risk of ICU admission (adjusted p < 0.001). Treatment with corticosteroids did not affect hospital mortality in patients with COVID-19 after balancing for confounders. A possible advantage of corticosteroid therapy was to reduce Intensive Care Unit admission, which could be useful in reducing pressure on Intensive Care Units in times of limited resources, as during the COVID-19 pandemic.


Subject(s)
Adrenal Cortex Hormones/pharmacology , COVID-19 Drug Treatment , COVID-19/mortality , Hospital Mortality , Adrenal Cortex Hormones/therapeutic use , Aged , Cohort Studies , Female , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Treatment Outcome
15.
Crit Care ; 24(1): 696, 2020 12 14.
Article in English | MEDLINE | ID: covidwho-977685

ABSTRACT

BACKGROUND: In the current SARS-CoV-2 pandemic, there has been worldwide debate on the use of corticosteroids in COVID-19. In the recent RECOVERY trial, evaluating the effect of dexamethasone, a reduced 28-day mortality in patients requiring oxygen therapy or mechanical ventilation was shown. Their results have led to considering amendments in guidelines or actually already recommending corticosteroids in COVID-19. However, the effectiveness and safety of corticosteroids still remain uncertain, and reliable data to further shed light on the benefit and harm are needed. OBJECTIVES: The aim of this systematic review and meta-analysis was to evaluate the effectiveness and safety of corticosteroids in COVID-19. METHODS: A systematic literature search of RCTS and observational studies on adult patients was performed across Medline/PubMed, Embase and Web of Science from December 1, 2019, until October 1, 2020, according to the PRISMA guidelines. Primary outcomes were short-term mortality and viral clearance (based on RT-PCR in respiratory specimens). Secondary outcomes were: need for mechanical ventilation, need for other oxygen therapy, length of hospital stay and secondary infections. RESULTS: Forty-four studies were included, covering 20.197 patients. In twenty-two studies, the effect of corticosteroid use on mortality was quantified. The overall pooled estimate (observational studies and RCTs) showed a significant reduced mortality in the corticosteroid group (OR 0.72 (95%CI 0.57-0.87). Furthermore, viral clearance time ranged from 10 to 29 days in the corticosteroid group and from 8 to 24 days in the standard of care group. Fourteen studies reported a positive effect of corticosteroids on need for and duration of mechanical ventilation. A trend toward more infections and antibiotic use was present. CONCLUSIONS: Our findings from both observational studies and RCTs confirm a beneficial effect of corticosteroids on short-term mortality and a reduction in need for mechanical ventilation. And although data in the studies were too sparse to draw any firm conclusions, there might be a signal of delayed viral clearance and an increase in secondary infections.


Subject(s)
Adrenal Cortex Hormones/standards , COVID-19 Drug Treatment , COVID-19/mortality , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use , Adult , COVID-19/epidemiology , Hospital Mortality/trends , Humans , Length of Stay/trends
16.
J Biomol Struct Dyn ; 40(5): 2053-2066, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-889354

ABSTRACT

The outbreak of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), represents a pandemic threat to global public health. To date, ∼530,000 people died of this disease worldwide. Presently, researchers/clinicians are adopting the drug repurposing strategy to combat this disease. It has also been observed that some repurposed anti-viral drugs may serve as potent inhibitors of SARS CoV-2 Mpro, a key component of viral replication. Apart from these anti-viral drugs, recently dexamethasone (an important corticosteroid) is effectively used to treat COVID-19 patients. However, the mechanism behind the mode of its action is not so clear. Additionally, the effect of other well-known corticosteroids to control this disease by inhibiting the proteolytic activity of Mpro is ambiguous. In this study, we have adopted computational approaches to understand these aspects. Six well-known corticosteroids (cortisone, hydrocortisone, prednisolone, methylprednisolone, betamethasone and dexamethasone) and two repurposed drugs (darunavir and lopinavir) against COVID-19 were subjected for molecular docking studies. Two of them (betamethasone and dexamethasone) were selected by comparing their binding affinities with selected repurposed drugs toward Mpro. Betamethasone and dexamethasone interacted with both the catalytic residues of Mpro (His41 and Cys145). Molecular dynamics studies further revealed that these two Mpro-corticosteroid complexes are more stable, experience less conformational fluctuations and more compact than Mpro-darunavir/lopinavir complexes. These findings were additionally validated by MM-GBSA analysis. This study provides corroboration for execution of anti-COVID-19 activity of dexamethasone. Our study also emphasizes on the use of another important corticosteroid (betamethasone) as potential therapeutic agent for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Adrenal Cortex Hormones/pharmacology , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2
18.
Life Sci ; 257: 118054, 2020 Sep 15.
Article in English | MEDLINE | ID: covidwho-640399

ABSTRACT

The outbreak of Coronavirus disease 2019 (COVID-19) is the current world health concern, presenting a public health dilemma with ascending morbidity and mortality rates exceeding any previous viral spread, without a standard effective treatment yet. SARS-CoV-2 infection is distinguished with multiple epidemiological and pathological features, one of them being the elevated levels of cytokine release, which in turn trigger an aberrant uncontrolled response known as "cytokine storm". This phenomenon contributes to severe acute respiratory distress syndrome (ARDS), leading to pneumonia and respiratory failure, which is considered a major contributor to COVID-19-associated fatality rates. Taking into account that the vast majority of the COVID-19 cases are aggravated by the respiratory and multiorgan failure triggered by the sustained release of cytokines, implementing therapeutics that alleviate or diminish the upregulated inflammatory response would provide a therapeutic advantage to COVID-19 patients. Indeed, dexamethasone, a widely available and inexpensive corticosteroid with anti-inflammatory effects, has shown a great promise in reducing mortality rates in COVID-19 patients. In this review, we have critically compared the clinical impact of several potential therapeutic agents that could block or interfere with the cytokine storm, such as IL-1 inhibitors, IL-6 inhibitors, mast cell targeting agents, and corticosteroids. This work focused on highlighting and contrasting the current success and limitations towards the involvement of these agents in future treatment protocols.


Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Dexamethasone/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Adrenal Cortex Hormones/pharmacology , Anti-Inflammatory Agents/pharmacology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus/immunology , Coronavirus/pathogenicity , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokines/immunology , Humans , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2
20.
Diabetes Metab Syndr ; 14(4): 519-520, 2020.
Article in English | MEDLINE | ID: covidwho-186339

ABSTRACT

BACKGROUND AND AIMS: Administration of corticosteroids is common in obstetric practice. In this concise review we queried on the effects of corticosteroids in pregnancies complicated by SARS-CoV-2. METHODS: We performed a literature search on PubMed, regarding the use of corticosteroids in patients with SARS-CoV-2 infection, in pregnancies complicated by SARS-CoV-2, as well as their impact on glycemia in pregnant women with or without diabetes. Furthermore, we searched for effects of SARS-CoV-2 and of other coronaviridae on insulin secretion and glycemia. RESULTS: SARS-CoV-2 infection appears to be a risk factor for complications in pregnancy. Corticosteroids may not be recommended for treating SARS-CoV-2 pneumonia but they may be needed for at-risk pregnancies. Corticosteroids in pregnancy have a diabetogenic potential. SARS-CoV-2 and other coronaviridae may have effects on glycemia. CONCLUSIONS: Caution should be exercised while using corticosteroids in pregnant women with COVID-19 requiring preterm delivery.


Subject(s)
Adrenal Cortex Hormones/pharmacology , Coronavirus Infections/complications , Diabetes Mellitus/physiopathology , Hyperglycemia/pathology , Hypoglycemia/pathology , Pneumonia, Viral/complications , Pregnancy Complications, Infectious/pathology , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Homeostasis , Humans , Hyperglycemia/etiology , Hyperglycemia/metabolism , Hypoglycemia/etiology , Hypoglycemia/metabolism , Insulin Secretion/drug effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pregnancy , Pregnancy Complications, Infectious/etiology , Pregnancy Complications, Infectious/metabolism , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL